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Abstract. The random-anisotropy BiumeEmery-Grimths model, which has been proposed to 
describe the critical behaviour of 'He'He mixtures in a porous medium, is studied in the pair 
approximation of the cluster variation method extended to disordered systems. Several new 
features, with respect to mean-field theory, are found, including a rich ground stale, a non-zero 
percolation threshold, a reentrant coexistence curve and a miscibility gap on the high%- 
concentration side down to zero temperature. Furthermore, nearest-neighbour correlations are 
i n d u c e d  into the random distribution of the anisotropy, and are shown to be responsible for 
the raising of the critical temperature with respect to the pure and uncorrelated random m e s  
and to contribute to the detachment of the coexistence curve from the A line. 

1. Introduction 

The study of the effects of randomness on phase transitions has a long history and only 
recently has there been considerable experimental and theoretical effort to understand them 
in depth. Here we will be concerned with a simple model for the phase separation of 
3He4He mixtures in aerogel 111. 

Aerogel is an extremely porous medium, the silica glass, made via the sol-gel process 
[Z]. Its porosity may be as high as 99.8% [3] corresponding to a density of 4 mg 
There is experimental evidence [2,4] that the aerogel microstructure is rather ramified, 
composed of silica strands with a thickness of the order of 10 A and with an area of the 
order of 700 m2 g-' [51. 

In order to describe in a simple way the effects of the porous medium on the phase 
separation diagram of 3He-4He we model the aerogel as a random external field that selects 
which of the two types of helium to have nearby. Thus it is quite interesting, among various 
other things, to understand the effect of the two types of impurity, i.e. the annealed 3He and 
the quenched randomness of the external field, on the superfluid transition of 4He. 

Using mean-field theory, transfer-matrix and real-space renormalization group calcu- 
lations it is possible to predict a variety of physically acceptable scenarios for the phase 
separation diagram as the density of the quenched impurities is varied [l]. The main fea- 
ture?, are the disappearance of the uicntical point present only in the pure 3He-4He system 
[6] and superfluidity in two coexisting phases, one rich in 3He and the other in 4He. Recent 
experiments [7] have confirmed the above qualitative picture. 

The goal of this paper is to give a detailed study of the model proposed in [I]  using 
the pair approximation of the cluster variation method (CVM) [SI, generalized to random 
systems [9,10]. This approximation improves the standard mean-field theory by taking into 
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account effects of correlation among spins at different sites. Most of the qualitative features 
of the mean-field phase diagram are preserved. 

Our approach allows us to incorporate effects of nearest-neighbour (NN) correlations in 
the quenched impurities, which are essential to a full understanding of the role of aerogel in 
the 3He-4He phase diagram. Unlike the coexistence curve, the h line separating the normal 
fluid from the superfluid is rather sensitive to correlations of the quenched impurities at 
high 3He concentration. Interesting new features are found in the T = 0 phase diagram and 
the role of the percolation threshold is elucidated. 

In the next section the random-anisotropy Blume-Emery-Griffiths (FABEG) model will 
be introduced. The CVM generalized to random systems will be discussed in detail in 
connection with the RABEG model. Section 3 is devoted to the discussion of the phase 
diagram obtained in the present approximation, including connection with experimental 
results, and in section 4 some conclusions are drawn. 

2. Definition of the model and the CVM pair approximation 

The Blume-Emery-Griffiths (BEG) model [6] has been introduced as a model for 3He-4He 
mixtures, and subsequently applied to many other systems such as magnetic alloys and 
multicomponent fluids. It is a spin-1 system with NN interactions and a uniform-anisotropy 
external field distinguishing only between the f l  and 0 values of the spin. When dealing 
with 3He-4He mixtures [61 the f l  and 0 spin states represent 4He and 'He respectively, 
and the superfluid transition is associated with the spontaneous symmetry breaking between 
the f l  states. This is of course an approximation, since the superfluid transition of 4He is 
in the XY class, and not in the king one, but nevertheless the model reproduces quite well 
the phase diagram of "e4He mixtures. 

The generalization of the BEG model for a 3He-4He mixture in a porous medium is 
described by the Hamiltonian [ I ]  

where the spin variables Si = 0. f l  are defined on sites of a lattice A. The first and the 
second sums are over NN pairs. The exchange interaction with strength J > 0 is responsible 
for the superfluid ordering, while the random anisotropy A,  is related to the difference of 
chemical potentials pj - p~q at site i, and K = K33 + KM - 2K34, where Kup is the 
interaction energy between "He and PHe atoms. Kmp does not depend significantly on 01 

and ,!l and so it is generally assumed that K = 0. 
Since we are going to study a model for 3He-4He mixtures in aerogel, we will let each 

Ai take the value AO or A ,  with the same meaning as in [I], i.e. A0 c 0 is the value of 
the anisotropy at the pore-grain interface of aerogel (where 4He prefers to stay), while A I  
can be thought of as a bulk field which controls the 3He concentration x .  

As we mentioned in the introduction we take into account NN correlations in the random 
field distribution assuming the following joint probability density (with i and j NNS) for the 
Ai values: 
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where po = p is the fraction of sites at the aerogel interface (the grain space is neglected), 
p ,  = I - p and E is a measure of the interface correlation. Integrating Aj one obtains 

P ( A i )  = p6(A; - Ao) + (1 - p)s(Ai  - A I )  (4) 

which was used as a starting point in [I]. 
Two global order parameters can be defined in our model: m = ( ( S i ) ) &  and q = ((S~))A. 

which are the quenched averages of the thermal equilibrium values ( S i )  and (S,'). m is the 
superfluid order parameter, while q = 1 - x is the 4He concentration. Furthermore, we will 
also need the 'local order parameters' 

among which the following relations hold: 

We are now ready to build the pair CVM free energy following the procedure outlined 
by Morita 191 for a general random system, which we briefly review. 

Consider a random system on a finite lattice, for which the configuration of random 
fie'lds and interactions is specified by a unique random variable h with distribution P(h) ,  
and define, according to the usual rules of statistical mechanics, a density matrix pc(ulh) 
for each configuration h (U stands for the set of statistical degrees of freedom of the system, 
e.g. spin variables). In terms of pc, the free energy associated with the configuration h will 
be given by 

where H ( h ,  U )  is the hamiltonian, ka Boltzmann's constant, and T absolute temperature. 
The quenched free energy F will then be given by 

F = P ( h ) F ( h ) .  
h 

Upon introducing the generalized density matrix 

one can easily show that 
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where S, depends only on P(h)  and is given by 

S, = -ks P ( h )  In P(h).  (11) 
h 

As in the pure case, we have a variational principle: p ( h , u )  can be determined as the 
matrix that minimizes F, as given by (lo), with the constraint 

In such a scheme it can be shown that the quenched average of the expectation value 
( A ( h , u ) )  of an operator A ( h , u )  is given by 

( (A(h ,  u)))h = P ( h ) ( A ( h ,  01) = p ( h ,  o ) A ( h ,  0). (13) 

The CVM can then be obtained by taking the thermodynamic limit and truncating the 
cumulant expansion for the entropy S = -kBT p(h, U) Inp(h, U )  to a set of 'maximal 
preserved clusters' ri. i = 1,2 ,  . . . , r (and all their translates). The variational principle 
will then be applied to the reduced density matrices pr, (h,  U )  associated with the maximal 
preserved clusters. 

In the following, our maximal preserved cluster will be the NN pair, and thus we will 
introduce a density mabix pp with elements pp(h,u)  = p:~.~a) (S, ,  S,) (nI,nz = 0, 1; 
SI, S2 = *l ,O),  where h = (A",, An2) is the random field configuration on the cluster and 
U = (SI. S2) denotes the set of spin variables. p, (which is diagonal, since we are dealing 
only with the z component of the spins) is subject to the constraint E, pp(h. U )  = P(h) ,  
that is 

h h . o  

Writing p, as a direct sum of density matrices, one for each possible configuration of the 
random fields on the cluster 

the constraint (14) becomes 

Furthermore. p p  has the obvious symmetry property 

pp"')(SI, S,) = P y q S 2 ,  SI) > 0. (17) 

As usual, a (reduced) site density matrix can be obtained from p, by a partial trace: 
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or, more explicitly, 

The pair CVM free energy is then given by 

U 
F = U + k B T [ ( I  -u)Tr(p , Inp , )+~Tr(p~Inp~)]  (20) 

with U = ( ( H ) ) a  and U the coordination number of the lattice, and has to be minimized 
with respect to pp, with the constraints (16) and (17). Taking derivatives of F with respect to 
pp leads to three systems of equations, which are linear in the elements of In /iP'", In i? Col) 

and ln,5p('il respectively, and where the elements of Inp, can be treated as parameters. 
Exponentiating the solution and making use of (16) yields 

P 

with f l  = U J  f kB T and 

where LY = 1 - ]/U, d, = A , / ( u J ) .  The parameters m, and qn, which have been defined 
in (5), are given by 

m,  = ,@)(+) -;:I(-) 

q n  = ;:)(+) + ,@)(-I. 
It can be easily shown that m, and qn are solutions of the following equations: 

which, together with (21). are the basic results of this section, and the starting point for the 
analysis of the phase diagram of our model at finite temperature. 

3. The phase diagram 

At zero temperature. several different phases can be found, which will be identified by the 
set (mw = qm, mot = 401, m1o = 410. mri = 411). obtainable by the relations 
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The phase diagram is easily determined by comparing the energies U of the different 
phases, and is reported in figure 1. TWO comments are in order: (i) as opposed to the 
mean-field result 111, the boundaries between the different ground states no longer depend 
on the probability distribution of the random variables and (ii) increasing the level of the 
approximation we have obtained a more complicated phase diagram, with a larger number 
of possible ground states. This is reminiscent of what happens in the exact solution at 
T = 0 of the random-field king model on a Bethe lattice [ 111. Notice that our model (1) 
reduces to a random-field king model for J = 0 and K # 0 since all spin variables appear 
squared and thus assuming only the two values zero and unity. 

da 
Figure 1. Phase diagram a T = 0. 

At finite temperature, and for A0 c 0, it has been shown in the mean-field analysis [ l ]  
that the phase diagram has quite a rich structure, with a second-order transition separating 
the ordered phases from the disordered one, a first-order transition, terminating in a critical 
point, between the ordered phases above, and several multicritical points. Our approximation 
yields an even richer structure: indeed we have three different ground states (see the 
dotted line in figure l), (1111) for dl < 4 corresponding to 4He present everywhere, 
(1 110) for 4 c dl c 1,  which corresponds to 4He present in the aerogel interface and in 
its neighbourhood, i.e. everywhere except in the bulk of the pore spacel. and (1100) for 
di > 1, i.e. 4He only at the aerogel interface. Again, ordered phases are separated by the 
disordered (high-temperature) one by a second-order transition line, for which an equation 
can be obtained by expanding (23) around mo = m i  = 0. Up to the first order, the equations 
for m, yield 

where 

t Notice that m u  as a 'local order parameter' is avenged only over porepore pairs. 
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The equation for the critical temperature turns out to be 

(a00 - l)(alI - 1) = a o m  (27) 

meaning that a non-trivial solution of (25) exists, where 40 and g1 must be determined from 
the corresponding equations with mo = ml  = 0. A solution for the critical temperature 
is obtained for dl + +cu (and thus for any d l )  only if p is greater than the percolation 
threshold pc .  

The percolation threshold can be defined as follows: in the limit A, --f +CO, S; will be 
0 for all sites with anisotropy AI and our model will be equivalent to a random-diluted BEG 
model with anisotropy A0 and concentration p ,  corresponding to a situation with all the 
4He at the aerogel interface and all the 'He in the pore space. Such a model will undergo 
a second-order transition at T, z 0 for any large enough p .  and the percolation threshold 
is simply that value of p for which Tc becomes zero. For p z pe  a macroscopic, infinite 
cluster of sites with anisotropy A0 will form, making long-range order possible. 

pc can be obtained by taking the limits A I  -+ fco and fi  + fco in the equation for 
the critical temperature, and the result is 

1 
pc  = (U - 1)(1 + E )  

representing a remarkable improvement with respect to the mean-field theory, which gives 
pc = 0. Notice that for uncorrelated disorder, i.e. c = 0, the exact result for the Bethe 
lattice with coordination v is recovered [12]. 

_,,.: F oi 012 0:4 d.6 0.8 i 1:2 ' 

0.7 
0.6 

r 0.5 

0.4 
0.3 

.... i' 
Oo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

4 x 

Figure 2. (a)  Phase diagram in the (4, r )  plane for U = 6, c = 0. p = 0.21 > pc. do = -0.5. 
Heavy lines are our results and light lines are results from the menn.field approximation. (b) 
Phase diagram in the ( x .  r) plane for the case of (a). Symbols as in (a)  (for the dotted line see 
figure 6). 

For p > p c  the phase diagram has the structure shown in figure 2 (heavy lines): solid 
lines are used for the second-order transition, while dashed lines stand for the first-order 
transition separating (1 11 I )  and (1 1 10) phases (if in the ( d , ,  T = 0-l) plane) or for the 
corresponding coexistence region (if in the ( x .  5 )  plane, where x is the 'He concentration). 
C is a critical point. No first-order line separating ( I  110) and (1 100) phases seems to start 
from the point F(dl = 1, t = 01, where a first-order transition occurs at zero temperature. 
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__/. 
0:I 0:2 013 0:4 015 0:; 0:7 0!8 

Figure 3. ( a )  The same as figure 2(n) with p = 0.19 c pc (for the dotted line see fipre 5). 
(b)  Phase diagram in the ( x .  7 )  plane fo: the case of (a). 

dr x 

c 

di x 

Figure 4. ( U )  The same as figure 2(a) with p = 0.1 c pc .  (b)  Phase d i a g m  in lhe ( x .  r )  
plane far the case of ( U ) .  

Again this is reminescent of the behaviour of the random-field Ising model on the Bethe 
lattice [I I]. The phase diagram at T > 0 is qualitatively the same as that given by mean- 
field theory, which is reported for comparison (light lines). In all cases considered (A, c 0) 
x < l - p .  

For 0 c p < p c  a new feature arises that cannot be described by mean-field theory: the 
second-order line has a limit point F at zero temperature and d, = 1 ,  independent of p, i 
and do, and the critical temperature is zero for any dl > 1, meaning that, even if the ground 
state is ordered, the aerogel concentration is too low for the pore-grain interface to sustain 
an ordered phase at finite (i.e. non-zero) temperature. The corresponding phase diagrams 
are given in figure 3 and in figure 4, for typical values of the parameters. In the latter case 
the second-order line is reentrant and intersects the first-order line in the critical end points 
A and B. C is again a critical point which, together with the critical end point A, belongs to 
an 'internal critical-end-point' structure such as that studied, e.g. by Netz and Berker [13] 
for the pure model. It is easily realized that there exists a value p'; < pc  of p for which the 
points A and B merge into one, giving rise to a new multicritical point where the second- 
and the first-order lines are tangential to each other. It is also interesting to remark that the 
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first-order transition always has a reentrant behaviour, a feature that does not exist in the 
mean-field treatment [ 11. 

0.05 

0- 

0.7 
0.6 
0.5 

' 

7 

Figure 5. m. and q. versus 7 along the dotted line in figure 3(n) (dl = 0.65). 

3 

k,gure 6. m versus T along the dotted line in figure X b )  (x = 0.69). 

In our scheme the behaviour of order parameters and NN correlation functions can be 
obtained in a natural way: in figure 5 we report the behaviour of the local order parameters 
m. and qn versus temperature for the case f < dl i 1 (dotted line in figure 3(a)), where 
mo = qo = I and mk = 41 = plo/(l - p )  in the ground state. It is interesting that mo and 
m, exhibit a quite unusual oscillation. The increase at intermediate temperatures might be 
due to the reentrant behaviour of the first-order line, so that the completely ordered (1 11 1) 
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phase becomes closer as the temperature is raised along the dotted line. Furthermore, in 
figure 6, we report the global order parameter m versus temperature at fixed concentration, 
corresponding to the dotted line in figure 2(b). 

1 

0.9 - 

c 0.5. 

0.4. 

0.3. 
0.2. 
0.1. 

'0 0:l 0:2 0:3 '014 0:s 016 017 0:s 6 9  1 
X 

Figure 7. The critical temperalure in the ( x .  r )  plane for Y = 6. 6 = 0. 4, = -0.5 and p = 0 
(solid line). 0.1 (dashed line) and 0.2 (dotted line). 

0.9 - 

0.4. 

0.3 - 
0.2. 
0.1. 

'0 011 012 013 0:4 015 Q6 017 018 0.9 
X 

Figure 8. The critical temperature in the ( x .  z) plane for Y = 6. 4, = -0.5, p = 0. I and f = 0 
(solid line). 0.5 (doued line), 1.0 (dot-dashed line) and 2.0 (dashed line). 

Finally, let us discuss the effect of a correlation E > 0 in the random distribution on the 
phase diagram, and especially on the second-order transition. In the mean-field analysis [I] 
it was shown that the second-order transition occurs at r = 1 - x = q .  independent of p ,  
while our analysis shows that the second-order critical temperature at fixed concentration is 
indeed weakly dependent on p (figure 7). Introducing a correlation E of order unity in the 
random distribution of the Ai values causes the critical temperature to increase significantly, 
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E 

Figure 9. The critical temperaturr versus F for the case of tipre 1 and with x = 0.6 

especially in the low-q (high-x) region (figure S), and we believe that this effect should 
account for the experimentally observed [7] increase in the critical temperature with respect 
to the pure case. The behaviour of T, as a function of 6 is shown in figure 9. 

4. Conclusions 

A model for the critical behaviour of 3He-4He mixtures in a porous medium (aerogel), 
namely the random-anisotropy BlumeEmery-Griffiths model [I] ,  has been investigated 
in the pair approximation of the cluster variation method. Thk improves the mean-field 
analysis given in [ 11 in several directions. A rather rich phase diagram is found even 
at zero temperature, with various ground states corresponding to A. < 0: %e present 
everywhere, (1111) in figure I ,  at the aerogel interface and in its neighbourhood (1110), 
and only at the aerogel interface (1100). The symmetric situations, with 3He preferentially 
near aerogel, are of course possible within the context of a model (figure 1 for & > f). 

A non-zero percolation threshold can be determined, above which the phase diagram 
is mean field like, and below which it changes qualitatively, with the appearance of a 
zero-temperature limit point for the second-order transition line. A completely open and 
extremely interesting question concerns the universality class of the whole line of continuous 
transitions: is there a zero temperature or d, = +cc fixed point attracting a finite part of 
the critical line and an unstable fixed point at finite temperature separating two different 
critical behaviours (e.g. dl < 0 and d l  N l)? A real-space renormalization group analysis 
might be suitable to address this problem. 

In all considered cases, the first-order transition line (in the temperature-anisotropy 
phase diagram) and the coexistence region (in the temperature-concentration phase diagram) 
exhibit reentrant behaviour. This reentrance is also partially responsible for the existence 
of a miscibility gap on the high-3He-concentration side going down to zero temperature. 

The experimental phase diagrams are in remarkable agreement with those presented in 
figures 2(b) and 3(b). Quantitative comparisons would of course require more adequate 
treatments of the superfluid transition. 

Particular attention has been devoted to the analysis of the effects of a nearest-neighbour 
correlation in the random distribution of the anisotropy, which should not be neglected due 
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to the high correlation characterizing the aerogel interface. The main result is the increase in 
the critical temperature with respect to the pure case, contributing to the detachment of the 
h line from the coexistence curve, which has been experimentally observed [7] and cannot 
be explained in terms of uncorreIated randomness alone. Correlations in the quenched 
impurities make the question of the universality class of the critical line more involved 
even at low disorder concentration. 
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